
1) Use the graph of f' to sketch a graph of f .

2) Use the graph of f' to sketch a graph of f.

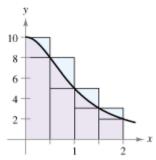
- 3) Find the indefinite integral of $\int (2x^2 + x 1)dx$
- 3) _____

- 4) Find the indefinite integral of $\int \left(\frac{2}{\sqrt[3]{3x}}\right) dx$
- 4) _____

- 5) Find the indefinite integral of $\int \left(\frac{x^3+1}{x^2}\right) dx$
- 5) _____

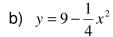
6) Find the indefinite integral of $\int \left(\frac{x^3 - 2x^2 + 1}{x^2}\right) dx$ 6)

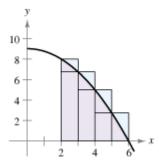
7) Find the indefinite integral of $\int (4x - 3\sin x)dx$ 7)


8) Find the indefinite integral of $\int (5\cos x - 2\sec^2 x)dx$ 8)

9) Find the particular solution of the differential equation f''(x) = 6(x-1) whose graph passes through the point (2, 1) and is tangent to the line 3x - y - 5 = 0 at that point.

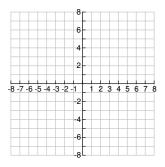
10) A ball is thrown vertically upward from ground level with an initial velocity of 96 feet per second. Using Calculus, find the following:		
a)	How long will it take the ball to rise to its maximum?	10a)
b)	What is the maximum height?	10b)
c)	When is the velocity of the ball one-half the initial velocity	?
		10c)
d)	What is the height of the ball when its velocity is one-half	the initial velocity?
		10d)


11) Use the upper and lower sums to approximate the area of the region using the indicated number of subintervals of equal width.



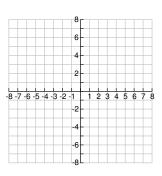
11a) Upper Sum _____

Lower Sum _____



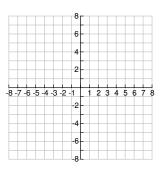
11b) Upper Sum _____

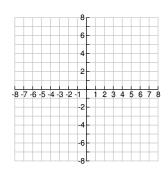
Lower Sum _____


12) Use the limit process to find the area of the region between the graph of the function and the x-axis over the indicated interval. Sketch the region.

$$y = 6 - x$$
 [0, 4]

13) Use the limit process to find the area of the region between the graph of the function and the x-axis over the indicated interval. Sketch the region.


$$y = x^2 + 3$$
 [0, 2]


13) _____

14) Sketch the region whose area is given by the definite integral. Then use a geometry formula to evaluate the integral.

a)
$$\int_{0}^{5} (5 - |x - 5|) dx =$$

b)
$$\int_{-4}^{4} \sqrt{16 - x^2} \, dx = \underline{\hspace{1cm}}$$

15) If $\int_{2}^{6} f(x) dx = 10$ and $\int_{2}^{6} g(x) dx = 3$, find

a)
$$\int_{2}^{6} [f(x) + g(x)] dx$$

15a) _____

b)
$$\int_{2}^{6} [f(x) - g(x)] dx$$

15b) _____

c)
$$\int_{2}^{6} [2f(x) - 3g(x)] dx$$

15c) _____

$$d) \int_{2}^{6} 5 f(x) dx$$

15d) _____

16) If
$$\int_{0}^{3} f(x) dx = 4$$
 and $\int_{3}^{6} f(x) dx = -1$, find

a)
$$\int_{0}^{6} f(x) dx$$

16a) _____

$$b) \int_{6}^{3} f(x) dx$$

16b) _____

$$c) \int_{4}^{4} f(x) dx$$

16c) _____

d)
$$\int_{3}^{6} -10 f(x) dx$$

16d) _____

17) Find the particular solution of the differential equation $f'(x) = -2x$ whose graph passes through the point (-1, 1).		
17)		
18) The speed of a car traveling in a straight line is reduced from 45 to 30 miles per hour in a distance of 264 feet. (Hint: change mph to feet/sec)		
a) Assuming constant deceleration, how far (in feet) has the car moved when it has been brought to rest?		
18a)		
b) Find the distance (in feet) in which the car can be brought to rest from 30 miles per hour, assuming the same constant deceleration.		
18b)		